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•The Need for Space Radiation Shielding on Piloted 
Spacecraft

• Space Radiation Environment

• Measurements from Mir Orbital Station

• Mechanisms of Radiation Interaction with Matter

•Initial Results from the BEAMS Project

• Results from Heavy Ion Exposures

• Results from Proton and Neutron Exposures

•Overview of MMARSS Project

•Conclusions

Overview
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• Risk to astronaut health and safety from long-duration 
exposure to ionizing radiation is one of the biggest obstacles 
to Human Interplanetary Spaceflight and the establishment of 
a permanent base on the moon.

• Estimate 50 g/cm2 of Aluminum (18.5 cm or 7.3”) needed to 
stay below 50 mSv recommended limit for trip to Mars.

• Al shielding can make radiation exposure worse by creating 
neutrons in nuclear interactions with incident charged 
particles.

• Secondary neutrons tend to build up with increasing shielding 
depth, increasing the radiation hazard.

Introduction
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Solar Particle Events
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•The Primary Energy Loss Mechanism is Ionization

•In LEO, most of the Flux is Low Energy Protons and Low 
Energy Electrons that are attenuated within the first g/cm2

•Energy Spectra of most SPEs are low enough that Spacecraft 
Shielding will Attenuate most Flux (heavily shielded vault)

•Much of GCR Spectrum is too Energetic to be Effectively 
Shielding …at least in terms of ionization. Estimate: ~50 g/cm2

•Nuclear Processes (both Projectile and Target Fragmentation) 
lead to Production of Secondary Charged Particles and 
neutrons

The Space Radiation Shielding Problem
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Dose & Dose Equivalent Rates as a function of Shielding Depth

Exterior of Mir Orbital Station, measured in CR-39 PNTD/7LiF TLD
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Atomic Properties (cross sections)
• Number of Electrons Per Unit Volume (high)

• Mean Electronic Excitation Energy (low)

• Tight Binding Corrections of Inner Shell Electrons (low)

Nuclear Properties (cross sections)
• Mean Free Path (short to break up heavy nuclei)

• Composition & Energy Spectrum of Secondaries

Materials Properties that Affect Radiation Shielding



15 April 2004

Eril Research, Inc.

0.0 5.0 10.0 15.0
Range in H2O (cm)

0.0

1.0

2.0

3.0

4.0

5.0
R

el
at

iv
e 

D
os

e

446.6 MeV/n 28Si
422.6 MeV/n 56Fe

Energy Loss Through Ionization
Bragg Curves Measured at HIMAC



15 April 2004

Eril Research, Inc.

Incident Nucleon

proton or neutron

Target Nucleus in 
Spacecraft Structure

or Contents

Intra-nuclear
Cascade

Extra-nuclear Cascade 
with additional target nuclei

γ

γ
π0

π±

µ±

e+

e+

e-

e-

Electromagnetic
Cascade

muons

n

n

p

p
n

α

recoil nucleus

evaporation
nucleons

Compound
Nucleus Decay

γ decay

 α-decay

 β-decay

Induced
Radioactivity

p

charged and
neutral pions

Types of Nuclear Interaction



15 April 2004

Eril Research, Inc.
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BEAMS: Benchmark Evaluations and 
Analysis of Materials for Shielding

Objective: Provide Heavy-Ion Accelerator Data to validate the 
Radiation Transport Codes currently under development.

• Conduct Set of Heavy-Ion Thick Target Benchmark 
Measurements

• 0.5 to >30 g/cm2

• High Density Polyethylene (HDPE), Aluminum, Copper
• Compare Benchmark Measurements with Results from Model 

Calculations and with Results from other Instruments
• Design and Fabricate Set of “Standard” Thick Target Shields: 

HDPE, Al, Cu; also Graphite, Tissue Equivalent Plastic, Water
• Make Benchmark Measurements of Neutron- and Proton-

Induced Target Fragmentation
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• Use same instruments for transport code validation as are 
used aboard spacecraft for crew dosimetry (presumably 
same instruments that will be used on interplanetary 
spacecraft).

• Measure same dosimetric quantities (Dose, Dose 
Equivalent, LET/y spectra) measured for crew dosimetry.

• Make measurements using Tissue Equivalent detectors

• Carry out measurements in such a way that they can be 
easily and accurately modeled.

BEAMS/MMARSS Approach
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Accelerator Facilities

•NASA Space Radiation Laboratory (NSRL) at Brookhaven
•Protons through Au (no Noble Gases)
•100 MeV/nucleon – 3 GeV/nucleon

•HIMAC at National Institute of Radiological Sciences, Chiba
•He through Fe
•100 – 800 MeV/nucleon

•Loma Linda University Medical Center
•55 – 250 MeV Protons
•Solar Particle simulation

•Los Alamos Neutron Science Center (LANSCE)
• ≤800 MeV neutrons
• 800 MeV protons 
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Detectors/Dosimeters

•CR-39 Plastic Nuclear Track Detector (PNTD) –E. Benton, 
N. Yasuda

•LET∞H2O ≥5 keV/µm
•LET Spectrum, Dose, Dose Equivalent

•Thermoluminescent Detector (TLD) –E. Benton, A. Frank
•Total Absorbed Dose (high-LET with reduced efficiency)
•Pille Portable TLD System (now in use on ISS) -KFKI 
Budapest Hungary

•Tissue Equivalent Proportional Counter (TEPC) –B. Gersey
•Lineal Energy (y) Spectrum, Dose, Dose Equivalent
•0.5 to 1000 keV/µm

•Liulin-4 MDU Portable Si Spectrometer –Y. Uchihori, E. 
Benton

•LET Spectrum, Dose, Dose Equivalent
•0.5 to 40 keV/µm
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Differential LET Fluence Spectra measured in CR-39 PNTD
422.6 MeV/n 56Fe at HIMAC, High Density Polyethylene Targets
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Differential LET Fluence Spectra measured in CR-39 PNTD

446.6 MeV/n 28Si at HIMAC, High Density Polyethylene Targets
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•Neutrons interact with matter (tissue) by means of elastic 
scattering with hydrogen 

•High-Energy Neutrons (and Protons) interact with matter 
by means of non-elastic target fragmentation with heavy 
nuclei (C and O in body, Si in electronics)

The best way to shield a spacecraft from neutrons is to not 
produce them in the first place –Larry Townsend

Importance of Neutrons when Developing 
Shielding Materials
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Integral LET Flux Spectra measured in CR-39 PNTD
Dependence of neutron- and proton-induced target fragmentation 

contribution on orbital inclination and altitude in LEO 
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173 MeV protons, 90°, Svedberg Laboratory, Uppsala
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Integral LET Fluence Spectra measured in CR-39 PNTD
Protons and Neutrons Exposures, 90°, Svedberg Laboratory, Uppsala
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CR-39 PNTD Exposed to 230 MeV Protons at LLUMC

Protons & α-particles

B = 8.0 µm, 500×

Short-Range Heavy Recoils 

B = 0.5 µm, 500×
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Low mean atomic number (Z) materials tend to 
provide the best radiation shielding.

• Materials with low mean atomic mass mean more nuclei in 
the path of the incident cosmic ray (short mean path length) 
helping to break up heavy charged particles.

• Lighter target nuclei contain fewer neutrons (H contains none 
at all) so fewer secondary neutrons are created.

• Low Z nuclei are less effective in creating electrons and 
positrons by pair production and x-rays by Bremsstrahlung.

• Some nuclei, notably C and O, tend to emit α-particles 
instead of neutrons when hit by incident cosmic rays.

• Polyethylene (CH2, 14% Hydrogen by mass) is considered the 
standard against which all new shielding materials are 
compared.



15 April 2004

Eril Research, Inc.

MMARSS: Multifunctional Materials Analysis of 
Radiation Shielding for Spacecraft

Objective: Characterize the Radiation Shielding Properties 
of Novel, Multifunctional Materials via Heavy-Ion 
Accelerator Testing.

•Select and develop prototype Multifunctional Spacecraft 
Materials 

•Test shielding effectiveness via particle accelerator-based 
exposures

•Model shielding effectiveness using space radiation 
transport codes (HZETRN, HETC, FLUKA, MCNPX)

•Create Shielding Materials Database
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“Revolutionary” Shielding Concepts/Materials 
being considered by NASA

• Active Shielding
• Electrostatic
• Magnetic

• Hydrogen-filled Carbon Nanotubes (6-20% H by mass, 
dual use as shielding and structure/H storage).

• Metal Hydrides (7-18% H by mass, use for H storage 
in Fuel Cells).

• Palladium Alloys for H storage (4% H reported)
• Liquid/Solid Hydrogen

None of these concepts/materials is likely to be practical for 
some time, if ever (low NASA Technical Readiness Levels).
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Approach of MMARSS Project

• Materials familiar to the Aerospace Industry (what 
do people make spacecraft out of and why?)

• Make maximum use of what is already available

• Realistic, not “revolutionary” gains in shielding 
performance

• Emphasize “multifunctional” nature of materials

• Don’t be afraid to use “Dirty Hands” methods (i.e. 
fabricating own material samples) 

The MMARSS Project is taking a pragmatic approach in its 
choice of shielding materials for development and testing.
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Shielding Materials for MMARSS Project

• Composites (perhaps with high H content in Epoxy resin)
• Carbon, Polyethylene, Aramid (Kevlar)

• Thermoplastics and Structural Polymers with high H 
content

• Multilayered (honeycomb) materials with polyethylene or 
other high H content fillers

• 10B or 6Li doped polymers or resins (to shield out thermal 
neutrons)

• Materials with thin layers of Cd or Ta to shield out thermal 
neutrons

• Simulated Martian and Lunar Regolith w/wo Epoxy Binder
• Consumables (fuel, water)
• Looking for other “good ideas”
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Conclusions

•Both BEAMS and MMARSS Projects are underway
• Loma Linda SPE Simulation: May 1-2
• HIMAC Beamtime in Jan/Feb, June 4-19 ( C, O, Ar, 
and Kr)

• NSRL Beamtime in March (Si and Fe) and Sept. (H 
and O)

• Busy Analyzing TEPC and CR-39 data
•Working in Close Collaboration with Measurements 
Consortium (Miller et al.)

•Looking Forward to Participation of Transport Code 
Community in Modeling BEAMS Experiments

•Hope to Extend BEAMS/MMARSS into the actual GCR 
Environment aboard the Deep Space Test Bed.


